ИНЖЕНЕРНО - ТЕХНИЧЕСКИЕ СИСТЕМЫ И ОБОРУДОВАНИЕ






АСИНХРОННЫЙ И СИНХРОННЫЙ ДВИГАТЕЛИ – РАЗНИЦА

КОНСТРУКЦИЯ
ПРИМЕНЕНИЕ

Для того чтобы заставить электричество совершать полезную работу, электрическую энергию необходимо преобразовать в механическую.

Для этого в промышленных электрических сетях переменного тока применяются электродвигатели двух типов — асинхронные (АД) и синхронные (СД).

Машины обоих типов имеют схожие конструктивные черты:

  • оба типа машин состоят из неподвижного статора и вращающегося ротора;
  • основу статора электродвигателей обоих типов составляет электромагнитная система (стальной сердечник с обмотками), заключённая в корпус из немагнитного материала;
  • обмотки статора, подключенные к промышленной электросети, создают электромагнитное поле с круговым периодическим изменением вектора напряжённости.

Примечание.

Применительно к синхронному статор чаще именуется якорем, а ротор — индуктором. Между этими понятиями существует смысловая разница.

Определения статор и ротор применяются соответственно к неподвижной и подвижной части машины. Наименования якорь и индуктор имеют функциональное значение и применяются к машинам постоянного тока и синхронным.

В ГОСТ 27471-87 якорь определён как часть электродвигателя, в обмотке которой протекает ток нагрузки, а индуктор как ротор или статор синхронной машины с обмоткой возбуждения или постоянным магнитом.

То есть в общем случае, как статор, так и ротор могут быть и якорем и индуктором. Но поскольку исполнение синхронного со статором – индуктором и ротором – якорем можно отнести к исключениям, такие редкие конструкции в описаниях обычно не рассматривают.


КОНСТРУКТИВНЫЕ ОТЛИЧИЯ АСИНХРОННОГО И СИНХРОННОГО ДВИГАТЕЛЕЙ

Основные различия заключаются в конструкции роторных обмоток и принципе возникновения вращающего момента.

Асинхронный двигатель.

Роторная обмотка АД может быть замкнутой накоротко («беличья клетка»), либо через подключаемые дополнительные сопротивления, находящиеся вне двигателя.

Первый тип называют «электродвигателем с короткозамкнутым ротором», второй — «с фазным ротором». Дополнительные сопротивления в фазной роторной обмотке служат для облегчения запуска, по завершении которого шунтируются.

Блок сопротивлений соединяется с обмоткой фазного ротора скользящими контактами коллекторного механизма. Асинхронный двигатель с «беличьей клеткой» не имеет коллектора.

При подаче напряжения на обмотку статора, создаётся круговое магнитное поле, вращение которого вызывает появление ЭДС индукции и соответственно, ток в стержнях «беличьей клетки».

По закону Ампера на каждый стержень с током в магнитном поле статора действует сила, направленная перпендикулярно стержню, то есть, по касательной к поверхности ротора, которая и создаёт вращающий момент.

ЭДС индукции и ток в обмотке ротора возникают только при различии частоты, с которой вращается вал двигателя и магнитное поле статора.

Поэтому в асинхронном двигателе частота вращения поля всегда больше частоты вращения вала двигателя. Отсюда и название — асинхронный двигатель.

Синхронный двиратель.

На индукторе синхронного двигателя переменного тока располагается обмотка возбуждения, которая питается от стороннего источника постоянного тока через коллекторный механизм.

Для облегчения запуска электродвигателя на его роторе также располагается короткозамкнутая «беличья клетка», которую называют демпферной обмоткой.

Круговое поле статора вызывает появление силы Ампера, действующей на обмотку возбуждения. Но поскольку ток возбуждения СД не зависит от магнитного поля статора, а создаётся внешним источником, его индуктор раскручивается до частоты вращения поля. Поэтому двигатель называется синхронным.

Пуск производится с помощью демпферной обмотки в асинхронном режиме, обмотка возбуждения при этом отключена. Когда частота вращения достигает асинхронной, подаётся ток возбуждения и частота возрастает до синхронной величины.


РАЗНИЦА В ПРИМЕНЕНИИ

Синхронные двигатели в отличии от асинхронных имеют более сложную конструкцию и высокую цену, но обладают улучшенными эксплуатационными характеристиками:

  • частота вращения более стабильна и не имеет ярко выраженной зависимости от нагрузки на валу и уровня сетевого напряжения;
  • более высокая перегрузочная способность;
  • двигатели с автоматическим регулированием тока возбуждения способны поддерживать оптимальное напряжение в сети.

Асинхронные потребляют наряду с активной большой объём реактивной энергии, которая транспортируется по линиям вместе с активной составляющей, увеличивая потери.

В крупных узлах потребления это приводит к дефициту реактивной мощности и значительной посадке напряжения. В этом случае используют батареи конденсаторов или синхронные компенсаторы, вырабатывающие реактивную мощность.

Применение СД вместо АД решает эту проблему, так как синхронные двигатели могут работать в широком диапазоне значений cos⁡ φ, не только не потребляя реактивную мощность, но и отдавая её в электрическую сеть.



  *  *  *

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Содержание