ИНЖЕНЕРНО - ТЕХНИЧЕСКИЕ СИСТЕМЫ И ОБОРУДОВАНИЕ






АСИНХРОННЫЙ ДВИГАТЕЛЬ ПРИНЦИП ДЕЙСТВИЯ

ОДНОФАЗНЫЙ И ТРЕХФАЗНЫЙ
ФАЗНЫЙ РОТОР
КОРОТКОЗАМКНУТЫЙ РОТОР

Термин «асинхронный двигатель» относится ко всем электрическим машинам-преобразователям энергии переменного тока в механическую с частотой вращения ротора меньшей, чем у магнитного поля статора.

Данная группа является самой распространенной, ориентировочно до 90% всех выпускаемых бытовых и промышленных электродвигателей являются асинхронными.

Конструктивно эти устройства состоят из:

1. Статора – неподвижного цилиндра, собираемого из тонких изолированных стальных пластин (реже – монолитного исполнения) с пазами для обмоточного провода, сдвинутыми по оси на 120о.

2. Подвижного ротора (короткозамкнутого или фазного).

3. Деталей, обеспечивающих вращение и безопасную работу электродвигателя (вала, подшипников, подшипниковых щитов, станины с лапами, крыльчатки и кожуха вентилятора, коробки выводов).

Активные части асинхронного двигателя всегда разделены воздушным зазором, благодаря бесконтактному индуцированию тока, приводящего вал в работу, эта группа считается более надежной в эксплуатации.

В отличие от синхронных двигателей данные устройства не имеют вспомогательной обмотки на роторе для выработки постоянного э/м поля, что отрицательно сказывается на пусковых характеристиках, но положительно – на надежности и себестоимости.

Принцип их действия основан на создании в активных частях магнитных полей с разной частотой вращения, а именно с отклонением поля движущегося сердечника в меньшую сторону.

Для понимания данного принципа стоит рассмотреть работу асинхронного двигателя пошагово:

1. При подаче переменного напряжения на фазы статора возникает магнитный поток, смещение на 120° обеспечивает его неизменное вращение.

2. При пересечении с контуром сердечника индуцируется ЭДС и вырабатывается переменный ток.

3. Смещение создает крутящий момент, запускающий двигающиеся части машины, поле ротора стремится за потоком статора.

4. По мере приближения частот э/м процессы затухают, крутящий момент стремится к 0.

5. М.п. статора вновь пересекаются с контуром начинающего отставать движущегося сердечника и снова индуцируют ЭДС.

В итоге, работу асинхронного двигателя обеспечивает именно взаимодействие м.п. и возникающих токов и отставание м.п. движущегося сердечника. Разницу отставания в процентном соотношении показывает характеристика скольжения.

В начале работы она равна 1, в номинальном режиме у стандартных устройств варьируется в пределах 1-8%, в холостом – достигает минимума. По мере роста нагрузки и статистического момента скольжение достигает критического значения.


ОДНОФАЗНЫЕ И ТРЕХФАЗНЫЕ ДВИГАТЕЛИ

В зависимости от числа питающих фаз и исполнения обмотки все асинхронные устройства разделяются на:

1. Двигатели, запитывающиеся от однофазной сети переменного тока, с одной основной рабочей обмоткой и дополнительной пусковой.

Принцип их действия основан на создании пульсирующего (меняющегося по величине, но неподвижного) э/м поля основной обмоткой и придании ему вращения – дополнительной, подключаемой через пусковые конденсаторы разного типа.

Однофазные асинхронные двигатели имеют простое устройство, не по получили широкого распространения из-за малого или отсутствующего пускового момента и крайне низкого КПД.

2. Трехфазные асинхронные электродвигатели, характеризующиеся высокой мощностью и работающие от сети 380 В при подключении концов обмотки по схеме «звезда» (рекомендовано при больших нагрузках) или от «треугольник».

При работе в однофазном режиме устройства теряют часть мощности и запускаются через фазосдвигающую цепь. Частота вращения вала при их работе зависит от количества обмоток и обратно пропорциональна числу полюсов.


АСИНХРОННЫЙ ДВИГАТЕЛЬ С ФАЗНЫМ РОТОРОМ

Отличительной особенностью этого устройства является усложненное исполнение ротора – в виде сердечника с трехфазной обмоткой, как правило соединяемой по схеме «звезда» с выводом на три кольцевых контакта на валу.

Последние изготавливаются из латуни или стали, изолируются друг от друга и подключаются с помощью двух пружинных щеток к внешней регулирующей цепи. Последняя включается в работу только в режиме пуска и состоит из ступенчатого реостата, дросселей индуктивности и в ряде моделей – источников постоянного тока и инверторов.

Такое исполнение позволяет частично компенсировать ряд главных недостатков асинхронных электродвигателей, а именно – сложности с точностью, плавностью и пределами регулировки скорости и сравнительно низкий КПД при пуске.

Принцип их работы остается прежним – по мере протекания напряжения в неподвижной части формируются магнитное поле, смещение фаз в пространстве и времени придает ему вращение, индуцируя в сердечнике ЭДС, приводящее в движение вал.

Наличие регулирующей цепи позволяет снизить пусковые токи (тем самым увеличивая момент), автоматизировать работу при старте и быстро корректировать показатели при перегрузках.

По мере роста числа оборотов двигателя сопротивление реостата уменьшается, а после выхода на рабочий режим специальное устройство размыкает кольца, обмотка сердечника закорачивается. При таком принципе действия достигается плавный пуск и стабильная работа устройства под нагрузкой, снижаются потери на щетках и сохраняется их целостность.

Но несмотря на явные преимущества и хорошие пускорегулировочные характеристики эта группа асинхронных э/д имеет относительно узкую сферу применения.

Добавление щеточного узла и сложной регулировочной цепи отрицательно сказывается на габаритах, весе, надежности и себестоимости. В частности, стоимость таких устройств как минимум в 1,5 раза выше в сравнении с короткозамкнутыми, имеющих более простые принцип действия и конструкцию.


АСИНХРОННЫЙ ДВИГАТЕЛЬ С КОРОТКОЗАМКНУТЫМ РОТОРОМ

Конструктивное отличие э/д этой группы – наличие обмотки сердечника в форме «беличьего колеса» из стержней, накоротко замкнутых двумя торцевыми кольцами.

В устройствах малой и средней мощности ее получают путем заливки расплавом алюминия сердечника из тонких листов стали с одновременным формированием охлаждающих лопастей и колец, высокой – привариванием колец к медным (реже – латунным) стержням.

Сердечники активных частей имеют зубчатую структуру и не нуждаются в дополнительной изоляции поверхностей из-за отсутствия контактирующих частей.

Принцип работы таких устройств действительно схож с раскруткой «беличьего колеса» - вращающееся магнитное поле неподвижной части приводит во вращение стержни сердечника, имеющие всегда разное значение индуцируемых токов.

Смещение стержней в свою очередь меняет эту величину одновременно на всех полюсах и парах, продолжая их вращение. В итоге работа двигателя прекращается лишь при отсутствии напряжения на обмотке статора.

При отсутствии какой-либо регулировки асинхронные машины такого типа имеют малый пусковой момент и высокий ток.

Раньше эту проблему решали путем добавления в конструкцию стержней с разной удельной проводимостью, чуть позже – изменением формы и сечения пазов.

В настоящее время этот недостаток асинхроников устраняют путем ввода в схему частотных преобразователей.

Преимущества (малая инерционность, низкая себестоимость, простота подключения, надежность и долговечность) в любом случае преобладают, двигатели этой группы являются самыми распространенными и универсальными.



  *  *  *

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Содержание