ЧТО ТАКОЕ АВТОТРАНСФОРМАТОР

Автотрансформатором (АТ) называют разновидность исполнения трансформатора, которая характеризуется наличием на магнитном сердечнике только одной обмотки, имеющей несколько отводов (отпаек).

Каждой отпайке соответствует определённый уровень напряжения. Таким образом, когда говорят о первичной или вторичной обмотке автотрансформатора, подразумевают те или иные обмоточные отпайки.

Особенность электрической схемы автотрансформатора, заключающаяся в наличии только одной обмотки, определяет отличие его технических параметров от характеристики обычного трансформатора.

Основные различия могут быть сформулированы следующим образом:

  • более высокий КПД по сравнению с обычным трансформатором;
  • меньший расход меди и стали при изготовлении обмоточных проводников и магнитопровода, соответственно меньший вес и стоимость оборудования при той же мощности;
  • наличие гальванической связи между первичными и вторичными электрическими сетями.

Повышенный КПД устройства определяется тем, что не вся трансформируемая мощность подвергается электромагнитному преобразованию, так как первичная и вторичная обмотки имеют общий участок. Вследствие этого потери энергии в меди и стали автотрансформатора ниже, чем у трансформатора аналогичной мощности.

Отсутствие необходимости изготавливать и монтировать вторую обмоточную катушку с проводником значительно снижает вес устройства и создаёт лучшие условия для охлаждения меди и стали.

Гальваническую связь между первичной и вторичной электрической сетью принято считать минусом устройства, однако в сетях с заземлённой нейтралью эта особенность роли не играет, а выигрыш в цене оборудования и уменьшение потерь может быть весьма значительным.


ПРИНЦИП РАБОТЫ АВТОТРАНСФОРМАТОРА

Рассмотрим принцип работы устройства на примере самой простой схемы с обмоточной катушкой, имеющей три отвода — два крайних и один средний (рис.1).

Схема автотрансформатора

Полное число витков обмотки Wв подключено к сети высокого напряжения, часть витков до отпайки Wн — к стороне низкого напряжения. Нижний по схеме вывод является общим.

В случае, когда устройство используется как повышающий преобразователь, на выводы Uн подаётся питающее напряжение, с выводов Uв снимается его повышенное значение в результате трансформации. Если мощность направлена от Uв к Uн, питающее напряжение подключается к отпайкам высокой стороны.

Коэффициент трансформации является масштабным показателем преобразования устройства и в данном случае определяется так же, как для обычного трансформатора:

K = Uв/Uн = Wв/Wн,

то есть численно равен отношению количества витков первичной и вторичной обмотки. Коэффициент трансформации может быть выражен также через значения токов. Соотношение в этом случае будет обратным:

K = Iн/Iв = Wв/Wн,

которое иллюстрирует, что с увеличением числа витков и соответственно значения U обмотки, ток в ней пропорционально уменьшается. Физически это означает, что значения мощностей в обмотках одинаковы, если пренебречь величиной потерь.

Строго говоря, мощность в обмотке, к которой подключен потребитель, всегда меньше мощности в питающей обмотке на величину потерь.

Сфера применения автотрансформаторов распространяется на различные отрасли, в числе которых:

  • энергетика (электроснабжение), где данные устройства большой мощности широко применяются на сетевых электрических подстанциях;
  • электроника, в которой многие радиотехнические устройства содержат АТ;
  • лабораторные электротехнические устройства регулирования электрических параметров (ЛАТР).


ЛАБОРАТОРНЫЙ АВТОТРАНСФОРМАТОР (ЛАТР)

Данное устройство предназначено для регулирования сетевого напряжения 220В в широких пределах, нередко от нуля до номинального значения.

В лабораторной практике ЛАТР используется:

  • для испытания различного электрооборудования;
  • как регулируемый источник переменного напряжения.

Основой лабораторного АТ является кольцевой (тороидальный) магнитопровод, на котором расположена обмотка, выполненная медным эмалированным проводом. Крайние выводы обмотки включаются в электрическую сеть 220 вольт, средний вывод обмотки — скользящий.

Токосъёмник среднего вывода имеет следующую конструкцию. Наружный слой обмотки лабораторного АТ зачищен от изоляционного лака с одной из торцевых сторон. По зачищенному участку обмотки перемещается графитовое токосъёмное колесо, прижимаемое к обмотке усилием пружины.

Ось механизма вращения токосъёмника находится в центре тора, а на её конце установлена ручка, при вращении которой перемещается токосъёмник.

Нагрузка лабораторного АТ подключается к одному из крайних выводов и среднему. Таким образом, вращение рукоятки, вызывающее перемещение токосъёмника изменяет число витков обмотки, подключенной к нагрузке, следовательно, и значение U на нагрузке.

В эпоху ламповых телевизоров данное устройство имело широкое применение в качестве ручного регулятора напряжения. Автотрансформатор снабжался стрелочным индикатором выходного напряжения, за уровнем которого потребитель должен был наблюдать и при необходимости производить корректировку вращением рукоятки.

В наши дни такой принцип регулирования также не потерял актуальность. Лабораторный автотрансформатор находится в основе конструкции автоматических стабилизаторов напряжения электромеханического типа.

Ось токосъёмника в этих устройствах сопряжена с электронным сервоприводом, который автоматически устанавливает токосъёмник в положение, обеспечивающее номинальное значение напряжения на выходе. Сервопривод управляется электронной системой контроля.

Примечание. Электромеханические стабилизаторы напряжения относятся к наиболее точным приборам. Малая величина их погрешности обусловлена бесступенчатой системой регулирования.


СИЛОВЫЕ АВТОТРАНСФОРМАТОРЫ

Применение автотрансформаторов на высоковольтных электрических подстанциях в качестве альтернативы обычным трансформаторам имеет чисто экономический смысл.

Оборудование данного типа используется только для соединения электрических сетей с заземлённой нейтралью в сетях напряжением 110 кВ и выше.

В сетях с изолированной нейтралью автотрансформаторы не используются, так как при однофазном коротком замыкании, в смежной сети происходит недопустимое повышение напряжения.

Широкое применение в энергосистемах получили трёхобмоточные автотрансформаторы как в трёхфазном исполнении, так и в виде группы из трёх однофазных устройств. Каждая из трёх обмоток — высокого напряжения (ВН), среднего напряжения (СН) и низкого напряжения (НН) подключена к соответствующей электрической сети.

Данные АТ являются, по сути, гибридами традиционного трансформатора и автотрансформатора. Две ступени этих устройств (ВН и СН) гальванически связаны между собой, а третья (НН) имеет с ними только электромагнитную связь.

В зависимости от того, какие ступени АТ задействованы, трёхобмоточный автотрансформатор способен работать в одном из трёх режимов:

  • автотрансформаторный режим, при котором задействованы только ступени ВН и СН, имеющие гальваническую связь;
  • трансформаторный режим, который реализуется при работе одной из пар ступеней — ВН и НН либо СН и НН;
  • смешанный режим осуществляется при работе всех трёх ступеней автотрансформатора.



  *  *  *
© 2014-2024 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.